Transcriptome Analysis of the Preterm Rabbit Lung after Seven Days of Hyperoxic Exposure

نویسندگان

  • Thomas Salaets
  • Jute Richter
  • Paul Brady
  • Julio Jimenez
  • Taro Nagatomo
  • Jan Deprest
  • Jaan Toelen
  • Lynette K. Rogers
چکیده

The neonatal management of preterm born infants often results in damage to the developing lung and subsequent morbidity, referred to as bronchopulmonary dysplasia (BPD). Animal models may help in understanding the molecular processes involved in this condition and define therapeutic targets. Our goal was to identify molecular pathways using the earlier described preterm rabbit model of hyperoxia induced lung-injury. Transcriptome analysis by mRNA-sequencing was performed on lungs from preterm rabbit pups born at day 28 of gestation (term: 31 days) and kept in hyperoxia (95% O2) for 7 days. Controls were preterm pups kept in normoxia. Transcriptomic data were analyzed using Array Studio and Ingenuity Pathway Analysis (IPA), in order to identify the central molecules responsible for the observed transcriptional changes. We detected 2217 significantly dysregulated transcripts following hyperoxia, of which 90% could be identified. Major pathophysiological dysregulations were found in inflammation, lung development, vascular development and reactive oxygen species (ROS) metabolism. To conclude, amongst the many dysregulated transcripts, major changes were found in the inflammatory, oxidative stress and lung developmental pathways. This information may be used for the generation of new treatment hypotheses for hyperoxia-induced lung injury and BPD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional assessment of hyperoxia-induced lung injury after preterm birth in the rabbit.

The objective of this study was to document early neonatal (7 days) pulmonary outcome in the rabbit model for preterm birth and hyperoxia-induced lung injury. Preterm pups were delivered at 28 days (term = 31 days; early saccular phase of lung development) by cesarean section, housed in an incubator, and gavage fed for 7 days. Pups were divided into the following groups: 1) normoxia (21% O2; no...

متن کامل

Lung Morphometry, Collagen and Elastin Content: Changes after Hyperoxic Exposure in Preterm Rabbits

INTRODUCTION Elastic and collagen fiber deposition increases throughout normal lung development, and this fiber network significantly changes when development of the lung is disturbed. In preterm rats and lambs, prolonged hyperoxic exposure is associated with impaired alveolarization and causes significant changes in the deposition and structure of elastic fibers. OBJECTIVES To evaluate the e...

متن کامل

Antioxidant Enzyme Activities and Antioxidant Enzyme Gene Expression in Hyperoxia-induced Lung Injury in Premature Rat

Preterm infants exposed to high concentration oxygen are prone to develop hyperoxic lung damage, which is an importan t underly ing cause of bronchopulmonary dysplasia (BPD).1 Although the causative agent for BPD has not been conclusively identified, hyperoxia-induced lung injury i s bel ieved to be a major factor. Data from both cellu lar and whole animal models suggest that hyperoxic lung dam...

متن کامل

Role of endogenous nitric oxide in hyperoxia-induced airway hyperreactivity in maturing rats.

We sought to define the effects of maturation and hyperoxic stress on nitric oxide (NO)-induced modulation of bronchopulmonary responses to stimulation of vagal preganglionic nerve fibers. Experiments were performed on decerebrate, paralyzed, and ventilated rat pups at 6-7 days (n = 21) and 13-15 days of age (n = 23) breathing room air and on rat pups 13-15 days of age (n = 19) after exposure t...

متن کامل

Lung Hyaluronan and Lung Water in the Perinatal Period

Johnsson, H. 2001. Lung Hyaluronan and Lung Water in the Perinatal Period. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1020. 59 pp. Uppsala. ISBN 91-554-4989-1. Hyaluronan is an important component of the lung extracellular matrix, with a high capacity for water immobilization, but information on perinatal changes in the lung hya...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015